EM NOME DE KEPLER - EDSON ECKS







Em Nome De Kepler







Edson ecks







Muitas vezes entendemos a historia da ciência de forma fria, porque sempre a avaliamos a partir apenas das teorias e de suas descobertas, mas é preciso entender que por trás dessas teorias e descobertas, há seres humanos, sentido o que qualquer ser humano sente. Não apresentar também esse lado torna a ciência como algo frio distante, mas se ao contrário, revelarmos o lado humano dos pesquisadores, com todas as suas virtudes com todos os seus erros, a ciência se tornará algo amplo, belo, e porque não dizer trágico também, porque é assim que caminhamos entre belezas e tragédias, pessoais-coletivas-universais.












Não pretendo me alongar sobre a vida de Kepler, porém, lhes mostrarei uma resumida biografia de Kepler, para você entender como um ser humano pode lutar até o fim, contra as adversidades da vida, e da morte. 

Kepler terá sua vida marcada pelas as tragédias, mas nunca desistirá de seus sonhos, creio que foi isso que o manteve obstinado pela a vida, pela a ciência.  A paixão pela a descoberta iluminará seus olhos, em direção ás estrelas, mas sem esquecer-se da Terra.

 Kepler sabia exatamente o que queria dizer o Poeta Fernando Pessoa com ‘um ideal, uma causa, o que se escolhe fazer é mais importante do que a própria vida’. Kepler jamais duvidou disso,. e nem eu. Edson Ecks





A primeira parte desse trabalho tem uma resumida biografia de Kepler, na segunda parte, temos o método cientifico de Kepler, em relação ao de Francis Bacon, Galileu e Newton. Na terceira parte. Suas teorias e suas descobertas, para você entender que Kepler não era apenas um astrônomo, mais também um grande ser humano, físico-teórico (como chamamos hoje), um ‘astrofísico’, um inventor, um grande matemático.







KEPLER, VIDA









Seu pai tinha um caráter furioso, obstinado e briguento, mais tarde passou a viver como um vagabundo, e teve um final brutal.


Dos 9 aos 11 anos, kepler trabalhará de jornaleiro.




Em 1577 sua mãe o levará a um lugar alto, parar verem um cometa passar. 




Em 1580, seu pai lhe mostrara um eclipse lunar, e como a Lua se tornara vermelha.



Kepler perdoava seus pais, pois o horoscopo dizia que eles nasceram sobre uma ‘má estrela’.


Dos seus seis irmãos, três morrem em tenra idade.


Kepler era fraco fisicamente, e tinha hipocondria, e que todo tipo de doença de pele parecia padecer.


Em uma peça da escola sobre Batista foi posto para representar Mariana, por causa do seu corpo magro.



Kepler já havia se decidido pela a vida religiosa, mas recebe uma carta do Seminário de Graz (província austríaca), que desejava um professor de matemática, Kepler fora indicado. Mesmo relutante, o próprio padre lhe aconselhou a ir, foi para Graz. Onde sua vida mudaria para sempre, o caminho das estrelas estavam abertos para ele.


O matemático astrólogo Kepler, em 1595, na Áustria previu uma onda de frio me uma invasão dos turcos, houve um frio intenso para os povos dos Alpes, e os turcos devastaram, pilharam metade da Europa.


Em 1611 morre sua esposa, e seus dois filhos.


Katharina, mãe de Kepler, foi acusada de feitiçaria, o processo durou seis anos, e terminou em 3  de abril de 1621, depois de ficar prisioneira por um ano na Torre de Guglingen, por uma liberação inesperada. A pobre mulher, esgotada faleceu em 13 de abril de 1622: Deus disse Kepler, de uma só vez pôs fim a vida da minha mãe e a sua querela.

Quando Katharina foi acusada à caça ‘as bruxas’ estava no auge. Em poucos meses, entre 1615 e 1616, seis  mulheres foram acusadas de feitiçaria em Leonberg, exatamente onde vivia a mãe de Kepler. Em Weil, entre 1615 e 1629. Trinta e oito ‘bruxas’, ‘em nome de Deus’, tiveram morte atroz na fogueira.

Em 27 de abril, de 1597, casa-se, sob um ‘céu funesto’, com Barbara Muller.

Em 1613, casa-se pela a segunda vez, com Suzanna Reuttinger, a filha do casal morre em tenra infância.

Kepler e Galileu faziam mapas astrais, na época a astronomia ainda andava ‘de mãos dadas’ com a astrologia, Kepler dará um grande salto para esse divórcio.

Galileu gostava do apoio de Kepler, mas nunca lhe enviou a luneta que Kepler havia lhe solicitado.


E tão ‘fácil’ ler as três de Kepler hoje, mas na conclusão de Harmonia do Mundo: o autor resume o percurso que, em 24 anos o conduzira a terceira lei.

Houve muitos conflitos entre Tycho Brahe e Johannes Kepler, principalmente em relação aos seus sistemas cosmológicos.


Em 1597, Tycho Brahe advertido por Cristiano lV, novo rei da Dinamarca, por seu temperamento insuportável para com os seus comandados, deixaria Hven. A corte de Rodolfo ll, o recebe como o novo matemático imperial, em 1599.

Em abril de 1600, após uma violenta discursão. Kepler deixou o Castelo de Benatek rumo a Praga, de onde escrevera uma carta cheia de insultos a Tycho, seguida alguns dias depois de humildes desculpas. Mas uma vez o destino dá um golpe em Kepler. Três semanas depois Tycho foi buscar Kepler, que voltou ao Castelo, toda sua família estará lá em outubro. Enquanto isso em Graz, todos os luteranos foram condenados definitivamente ao exilio, com isso, Kepler, não teria nenhuma escolha. O mau humor e a soberba de Tycho eram agora, ‘a nova terra prometida’, para Kepler e sua família. Mas O castelo de Tycho, pela a astronomia, realmente era um Paraíso para Kepler, excelentes equipamentos de observações celestes, e promissores dados de Tycho à disposição do gênio de Kepler.



As publicações de Kepler geralmente eram de uma ‘luta de titânica’: Kepler termina em 1606, a Nova Astronomia, mas só será publicada em 1609. Sem falar que enfrentar batalhas terríveis com os herdeiros de Brahe, que queriam, por exemplo, que Kepler mantivesse o sistema de Brahe, que Kepler já aquela altura havia superado. Kepler teve muitas dificuldades para lançar suas obras. Em partes por causa de um enorme custo de uma publicação, que geralmente ele não tinha condições de assumir.


Johannes  Kepler morre no dia 15 de novembro de 1630.  Nem seu túmulo ficou em paz, pois a Guerra dos Trinta anos acabou por destruir o cemitério onde estava enterrado. Na noite de sua morte seu jovem ajudante Jacob Bansch registrou um eclipse solar. Abriu-se o portal por onde a alma de Kepler adentrou o Universo.














Kepler o Astrofísico










Muito se fala sobre o método cientifico de Galileu, ou sobre o método cientifico de Newton, este que consideravam, como o ‘apogeu da ciência moderna’, porém, Galileu, e principalmente Newton, ‘seguiam os antigos’, a matemática, e a geometria clássica.


Mesmo Galileu conhecendo as leis de Kepler, conservaria as orbitas circulares, ao invés das elipses de Kepler, porque ‘os círculos são belos’, não as elipses. Estás que no leito de morte, Tycho Brahe teria feito Kepler prometer não abandoná-las, e o seu sistema em que o Sol gira em torno da Terra, e os planetas em torno do Sol.



Fala-se muito que Newton ‘desenvolveu a teoria da gravitação’ aos vinte seis anos, mas na verdade a primeira edição dos Principia, fora lançado quando Newton tinha 45 anos. E os dados de sua juventude, não expressam realmente essa lei, somente Kepler, Galileu e Hooke, lhes abrirão as portas para essa visão.

Newton formula figuras geométricas, os Principia é um livro geométrico. Newton não rompe com os antigos geômetras, pelo o contrário os enaltece, e abomina a visão mecanicista (Descartes...), de um Universo que funciona sem o seu ‘Relojoeiro Divino’, escravo da sua própria criação.


Porém, tanto Kepler, Galileu e Newton, ainda postulavam as ‘estrelas fixas’.




MÉTODO KEPLERIANO















Kepler desejava uma astronomia fundamentada na física. Naquela época escreve a seu predecessor no estudo de Marte, dizendo que ‘a física e a astronomia devem ser estudadas simultaneamente’; as duas ciências são tão estritamente ligadas, que nenhuma delas pode atingir a perfeição sem a outra.

Kepler defendia que a astronomia ‘não devia ser sustentada em causas fictícias (‘sol imaginário’), mas em causas físicas’. Em sua carta a Herwart Von Hohenburg, em 10 de fevereiro de 1605, define seu objetivo de ‘mostra o mundo não como uma máquina animal, mas como um relógio ‘ (com leis físicas definidas). Em primeiro lugar encontrar as causa físicas dos fenômenos, somente depois disso poderá ser confirmado o fundamento da descoberta.




Hipótese astronômica









A hipótese astronômica. Significa que a astronomia não deveria se limitar a comentar os dados recolhidos, Kepler introduz a ideia de uma astronomia à priori: uma disciplina que formularia hipóteses sensatas que deferiam ser conferidas pelos os mediadores. Evocava a evolução da hipótese em astronomia, desde Tales. Opera Omnio – 1858, publicada pela a primeira vez por Carl Frisch.


Na Nova Astronomia, Kepler, se incumbe à tarefa extremamente difícil. Por um lado, ele devia introduzir conceitos novos, com demonstrações que, sensatas ou não, seguiram esquemas lógicos, obrigando-o por vezes a mergulhar em cálculos, longos e complexos.


Apesar de sobre-humano, o trabalho de Kepler não suscitou o entusiasmo de seus contemporâneos. Fora  criticado por seu primeiro ‘tutor do conhecimento’ Masclin, fabricius e Longomontanus, sobretudo em razão de sua obstinação em exigir justificativas físicas em seu modelo. Kepler sustentava que a astronomia não deve se fundamentar em hipóteses fictícias (poliedros...), mais em causas físicas. O caminho para a astrofísica estava aberto.


Isso é ciência moderna.







Vamos começar pelo o ‘fim’, primeiramente falaremos da três de Kepler, o valor imenso destas, e como elas revolucionaram a compreensão do estudo sobre o sistema Solar. Na sequencia, veremos outras dezenas de contribuições de Kepler à gravitação Universal, física, óptica, suas contribuições a ‘astrofísica’, supernova. Faz parte do conhecimento universal-popular  que ‘o Sol gira sobre si mesmo, igualmente a Terra, e que a Terra e os planetas giram em torno do Sol’, que cometam podem  atravessar ‘cair nas esferas’ (planetas), que não se pode colocar o Sol em ‘regularidades’, como os planetas, porque o Sol é, como ‘os cabelos da medusa: inconstante’, mas o que poucos sabem que foi Kepler, audaciosamente, quem fez essas descobertas.






AS TRÊS LEIS DE KEPLER




As três leis que Kepler formulou para o movimento dos planetas e seus satélites naturais. A primeira afirma que as órbitas dos planetas são elipses, sendo o Sol um dos focos destas trajetórias. A segunda lei diz que um planeta percorre áreas iguais em tempos iguais, que é como quem diz: um planeta tem um movimento mais rápido quando está próximo do Sol do que quando está afastado dele. Por fim, a terceira postula que as dimensões das órbitas dos planetas estão relacionadas com o tempo que dura as suas trajetórias em torno do seu foco (podendo, neste caso, ser o Sol). 




Kepler contribuía de maneira decisiva para a regularidade do movimento dos planetas. Em duas obras em 1609 e depois em 1619, e ele anunciaria as três leis que regem os movimentos dos planetas em torno do Sol, as três leis de Kepler.



A três leis de Kepler não foram aceitas imediatamente: ao contrário numerosos astrônomos entre eles, Galileu, as contestaram, como não acreditar, nos ‘círculos perfeitos’, para acreditar em elipses. Mas a verdade é que Kepler adotando o sistema das elipses obtinha previsões bem melhores sobre o movimento dos planetas. kepler deu um grande salto do ponto de vista das previsões cifradas.
Não se sabia a causa do movimento dos planetas (na época seis), e a terceira lei de Kepler abre caminho para tal explicação.

 Em 1602, Kepler adquire uma cópia do livro do médico e físico Wiliam Gilbert (1544-1609). Intitulada De Magnete, de 1600.








Gilbert compara a Terra a um grande Imã. Ele pensava poder provar os efeitos do magnetismo terrestre por meio de modelos constituídos de pequenas esferas de magnetita. Os partidários da explicação magnética descrevem a força magnética como invisível não material e capaz de agir a distancia.


Kepler, agora dirá que a ‘afinidade’ (atração) entre os planetas e Sol, e objetos na Terra, se dar por causa do magnetismo. O Sol é a anima motrix (alma motor)do sistema solar, dotado de uma polaridade magnética, que se estende pelo o espaço. O Sol gira em torno de si mesmo   -   fato que a observações das manchas solares feitas por Kepler, será confirmado muitos anos depois  -  e essa rotação é a causa da revolução dos planetas em torno do Sol. Os planetas possuem uma polaridade magnética que os atrai para o Sol durante metade de sua orbita, e os repele durante a outra metade.



Hoje sabemos que a Terra possui um grande ‘imã eletromagnético’, que de tempos em tempos, investes suas polaridades. Será que Gilbert e Kepler, estariam tão errados assim? Veremos isso mais adiante.


Não veremos vestígios dessa ideia de uma força não material, aprisionada no Sol, capaz de agir a distancia, que provocava o movimento dos planetas obedecendo as suas leis. Não veremos vestígios dessa ideia na resposta que Newton deu a Halley. Ela jamais será citada nos Principia. Mas Kepler, já especulava que uma força invisível existia, e que causava a ‘afinidade’ (atração), entre 
os planetas e o Sol.






Os Principia, de Newton, é um tanto quanto um ‘livro em branco’, sobre seus precursores, principalmente sobre Kepler. Como veremos no decorrer do trabalho aqui apresentado.









Tycho Brave




O professor Michael Mastlin, fará Kepler analisar os fenômenos celestes sobre pontos de vistas dos de Ptolomeu e Copérnico.

Copérnico na época era mal visto tanto por Lutero como pelo o Papa, mas para Kepler a matemática o aproximava de Deus, era a religião de Kepler.



Começaremos falando de Tycho Brahe. Um acontecimento que deu notoriedade a Brahe foi a nova estrela de 1572, uma supernova que havia explodido na Constelação de Cassiopéia e permaneceria visível por 18 meses. Porém, outros astrônomos também observaram esse fenômeno. Um fato similar teria ocorrido no ano de 125 a.C., segundo a História Natural de Plínio. Hiparco teria observado um fenômeno análogo. Esses astrônomos tentaram estabelecer se a estrela era ‘imóvel’, Brahe, demonstra que era ‘fixa’. Mas não é. A p(ercepção) r(elativa) os enganaram.





Esse evento foi muito importante, pois ia de encontro ao conhecimento aristotélico, contrariava a ‘imutabilidade celeste fora das esferas intangíveis’, ou seja, bem mais distante, pós-Lua. Tão escandalosa quanta essa de Tycho Brahe de que a distancia da ‘Terra e um cometa’, aparecido em 1577, era de pelo menos seis vezes maior do que a que nos separa da lua. Esse fenômeno modificava uma parte do céu que pertence ao vil mundo sublunar. Os gregos separavam o Universo em dois Mundos: um mundo sublunar, pertencente a Terra, em constante evolução, e, além da Lua, o Cosmos ou esferas dos fixos, mundo que se apresentava perfeito, imutável.


Brahe era considerado um elemento extremamente arrogante ao ponto do rei Cristiano Vl, lhe ‘pedir para se retirar’ da Ilha de Hven, alegando que ele tratava seus comandados  de forma estúpida.

Brahe perderá o nariz em um duelo de ‘cavalheiros’, fará uma prótese de ouro para ‘substituir’ o nariz perdido no confronto com o seu rival. Morre em, Tycho Brahe, o gênio arrogante, indomável, que também escreverá seu nome no templo sagrado da astronomia, e ainda deixou o caminho aberto para o seu auxiliar (Kepler) desbravar o sistema solar.


Kepler morre em 1630, e Tycho lhe abre os portões sagrados (das estrelas), com um sorriso largo e orgulhoso no rosto.







Kepler e suas descobertas revolucionárias












‘é o erro que nos revela o caminho da verdade’ Kepler.






Muito se fala sobre Kepler ser um dos Pilares da Astronomia, mais Kepler irá romper com os antigos geômetras, e definirá uma astronomia voltada para hipóteses (teorias), e observações físicas, aqui a astronomia define-se em antes e depois de Kepler, abrindo caminho para a astrofísica.



 Seu método científico mostrou-se muito mais amplo e produtivo que os de Galileu e Newton (que ainda eram ‘geômetras’), Kepler rompe com a geometria. Kepler também olhou o Mundo de forma física, suas hipóteses (‘teorias’) físicas mostrarem-se de grande valor, afastando-se do método baconiano científico, de não formular ‘hipóteses mágicas’, como por exemplo, dizer que a Lua atraia a massa d’água. Método que foi seguido à risca por Newton, o que o levou a nunca postular ‘o que era a gravitação’. Para a gravidade, a atração dos corpos celestes e terrestres, Kepler, postulou a teoria magnética da gravidade.







Mais o que muitos não sabem, é que Newton dedicou seus últimos anos de vida procurando identificar as causas da gravidade. Até o inicio dos anos de 1686. Considerava que a gravidade deve ser um éter que preenche inteiramente o espaço: o éter seria o agente ativo que permite Deus atuar sobre a matéria passiva.


Mesmo que Kepler tivesse postulados dez teorias equivocadas sobre como se dava a ‘afinidade’ (atração), entre os corpos celestes e terrestres, o efeito da  ‘afinidade’ (atração), permaneceria intocável.




Vejamos agora as magnificas observações,  conclusões e descobertas de Johannes Kepler, através de seu método à  priori e a posteriori, e que Ecks, completará, e da posteriori a priori.





Livros O Mistério, A Nova astronomia, Óptica...














Alguns anos depois da observação, por Brahe, da explosão de uma supernova.  Kepler, seguindo os passos de Brahe descreve um fenômeno grandioso da explosão de uma supernova na Constelação da Serpente. Além disso, 









Kepler retornaria a uma teoria dos cometas, objetos capazes de atravessar as esferas (planetas), em sua obra De Cometas Libelli Tres, publicada em 1619.




Copérnico e Brahe centralizam seus sistemas em um ‘sol mediano’, nome que se dá então ao centro da orbita terrestre -  aqui , ainda, a Terra tinha um papel particular em relação aos outros planetas. Desde o começo de sua obra Kepler afirmaria que o Sol (físico) está no centro do sistema solar, e a causa dos movimentos da Terra e dos Planetas.




Copérnico



Para a excentricidade (irregularidade) do Sol detectada por Brahe, disse Kepler, explicando essa excentricidade solar, pela a hipótese, aventada em 1591, de um Sol que, como uma medusa, contraia e dilata sua própria órbita. Certamente o Sol é uma estrela em incessante movimentação massa corpórea.






Seguindo o movimento das manchas solares, concluiu em O Mistério, que o Sol girava em torno de si mesmo. (essa comprovação cientifica se deu muito anos depois), e ‘leva com ele’ os planetas.


Kepler teorizou que haveria satélites em Marte, e estava longe de ser um equivoco -  Demos e Fobos, os dois satélites de Marte foram descobertos em 1877, pelo o americano Asaph Hail.




Para Tycho Brahe, o Sol gira em torno da Terra, e os planetas em torno do Sol.


Kepler_ O movimento dos planetas deve se referir ao Sol (físico) e não a um ponto puramente matemático.
 Imagine 900 páginas cobertas de cálculos – nos arquivos de Astronomia de Pulkovo, perto de São Petersburgo. Que Kepler utilizou para provar sua teoria.








__Apenas se colocando o Sol no centro do sistema é que as velocidades dos planetas tinham uma crescente quando se aproximavam do astro. Assim, podia atribuir ao Sol uma ‘virtude’que induzia os movimentos dos planetas, mas que, se distribuindo pelo o espaço, diminua com a distância.




Kepler compararia a ‘virtude’ do Sol à intensidade luminosa, a qual, sustentava ele, diminui segundo o quadrado da distancia. Todavia, ele já imaginava que, enquanto a luz (do Sol) se repartia ‘sobre uma esfera (planeta), já que ela se espalha pelo o espaço, a ação do Sol (que nós nomearíamos de gravitação) se repartiria unicamente sobre o plano identificado pela a órbita do planeta em questão  ­-  ele deduziria que ela diminui proporcionalmente a distância ao Sol e não ao quadrado da distancia. O Mistério.












O movimento (dos planetas) se acelera ou se retarda, segundo a proximidade ou a distancia do plano em relação ao Sol. Kepler se afastar das órbitas circulares de Brahe, e entra nas órbitas elípticas, por ele propostas.


Kepler passara por uma etapa suplementar ao afirma, que o plano que contem as orbitas dos planetas passa pelo verdadeiro sol___ Kepler calculou que a orbita da Terra fazia com o plano da orbita de Marte um ângulo (chamado de inclinação) de 1’50; esse dado será confirmado posteriormente.

Kepler compararia a ‘virtude’ (atração) do Sol à intensidade luminosa, a qual o sustentava, diminui segundo o quadrado da distancia. Todavia, ele já imaginava que, enquanto a luz (do Sol) se repartia ‘sobre uma esfera (planeta), já que ela se espalha pelo o espaço, a ação do Sol (que nós nomearíamos de gravitação) se repartiria unicamente sobre o plano identificado pela a órbita do planeta em questão  ­-  ele deduziria que ela diminui proporcionalmente a distância ao Sol e não ao quadrado da distancia. O Mistério.


O movimento (dos planetas) se acelera ou se retarda, segundo a proximidade ou a distancia do plano em relação ao Sol. Kepler se afasta das órbitas circulares de Brahe, e entra nas órbitas elípticas, por ele propostas.


 Kepler foi o primeiro a explicar os princípios de como funciona um telescópio e a relação entre a Lua e as marés.







Kepler E a Óptica








Outro grande mérito de Kepler foram seus estudos sobre a óptica moderna, os primeiros a investigar a formação de imagens com câmeras pinhole (sem lente), a explicar o processo de visão por refração no olho e o uso dos dois olhos para a percepção de profundidade e a formular óculos para miopia.








Em seu livro Óptica (1603) tem intuições geniais, como a ideia, de que a luz é associada ao calor e que os corpos iluminados são sempre aquecidos, em diversos graus, naturalmente.

Além disso, Kepler explora a representação da propagação em linha reta (os raios) para explicar fenômenos mais complexos: utilizar assim esses métodos que chamamos hoje de óptica geométrica, para descreve a reflexão sobre os espelhos, a localização das imagens, a refração pela a passagem em diferentes meios.



Em 1857, o historiador de ciências Poggendorf, em uma de suas aulas, a contribuições de Johannes Kepler à óptica. O jovem astrônomo Schiaparelli, que estava no auditório, tomou as seguintes notas:



Com os seus Ad Vitellionem poralipomena (1604), Kepler é sem dúvida o fundador da Dióptrica matemática. Nessa obra, ele daria à lei da refração a forma i-i’=ni+m/cosi, onde i é o ângulo de incidência i’, o ângulo de refração, e m e n, duas constantes. Foi o primeiro a afirmar que a visão era formada sobre a retina; ele explica a miopia, a presbetia e a óptica das lunetas. Estudou a irradiação e explicou por que, nos eclipses lunares, a parte  luminosa do disco parecia ter um diâmetro maior, tinha concepções exatas sobre a refração astronômica, enquanto Tycho acreditava que era por causa da distancia. Em 1611, ele publica sua Dioptrica, na qual a lei da refração era indicada de uma forma mais correta i=mi’ que, para os pequenos ângulos, era suficientemente exata. Calculava que o coeficiente da refração da água era 3/2. Ele mediria a refração com a ajuda de cubos de vidro, conhecia a aberração esférica e sabia que  apenas os espelhos parabólicos produziam imagens exatas. Inventaria o telescópico astronômico e mostraria como ‘endireitar’ os objetos com a ajuda de uma lente.





































A GRAVITAÇÃO UNIVERSAL DE  KEPLER - GALILEU - NEWTON














Kepler não se limitou apenas a analisa da atração (‘afinidade’) dos corpos celestes, mas também fez excelentes observações sobre a atração dos corpos na Terra:


No livro ‘Nova Astronomia’, Kepler, anuncia na introdução ‘a verdadeira doutrina sobre as virtudes’, da qual anunciaria os axiomas (verdades):


__a gravidade é uma afinidade entre dois corpos (análoga à afinidade magnética) por meio da qual, por exemplo, a Terra atrai fortemente uma pedra, está última atrai um pouco a Terra.


O que dirá Newton nos Principia que, ‘tanto a Terra atrai os corpos, como os corpos atraem a Terra, tanto a Terra atrai uma pedra, como a pedra atrai a Terra, minimamente’. Newton calculará a força dessa atração.


Newton não explica o que realmente causa essa atração (‘afinidade’), mas seu precursor Kepler, busca a teoria em que a luminosidade solar atrai os planetas, também aderiu a atração magnética, difundida na época por Gilbert, para explicar o fenômeno de atração entre os planetas, e a aplica  aos objetos na Terra. Hoje sabemos que a Terra possui um poderosíssimo campo eletromagnético. Ou seja, Gilbert a seu modo, e a sua época, teve uma boa intuição.
Willians Gilbert (1544-1603) em sua obra De Magnete (1600) comparava a Terra a um grande Imã.



Enquanto Kepler buscava uma teoria para justificar a atração terrestre e celeste, Newton dirá:


   (a gravidade) ‘diz como funciona, não o porquê’. ‘se esse agente é material ou imaterial, eu deixo essa conclusão aos meus eleitores’ Newton”.


Mas o pesquisador, escritor-compositor Edson Ecks, em seu livro ‘Os Princípios da Ciênsofia’ diz que, ‘Terra atrai a pedra, e a pedra atrai a Terra, porque possuem massa-energia positivas, se suas massas-energias fossem negativas, elas se repeliriam, e a pedra ficaria suspensa no ar’.

 Ecks analisa os sistemas tanto do ponto de vista de massa, como energia contida nesses sistemas, e entre os sistemas. Estuda o macro (planetas...) como se fosse ‘partículas’ em interação... Um estudo mais detalhe veremos mais adiante.

A gravidade segundo Kepler, depende das dimensões dos corpos, se a Terra não fosse redonda, os corpos não seriam atraídos em direção ao seu centro, mas ao longo das direções que mudaria segundo a localização. E se a Terra deixasse de exercer sua própria atração sobre as águas, elas seriam atraídas pela a Lua.


__se colocamos uma pedra entre duas pedras, está se posicionará em um ponto que determinado ‘pelas as relações entre suas dimensões’.
Com isso Kepler que dizer que há uma atração entre as pedras, que se uma pedra de uma lateral for maior do que a da outra lateral, a pedra menor posicionada no meio, tenderá a oscilar em sua direção, por sofrer maior ‘afinidade’ (atração).  


É preciso entender que depois que Kepler conhece o trabalho de Gilbert sobre o magnetismo, Kepler passará a indica que essa ‘afinidade’ (atração), é causada por magnetismo.






Newton nos Principia, calculará a força dessa atração, também nos corpos terrestres. E não postulará nenhuma causa física para a atração gravitacional. E jamais citará que Kepler havia postulado, que havia uma força imaterial que atrai os planetas ao Sol, e que o mesmo também ocorria na Terra, entre seus objetos.




A Gravitação Universal – De Edson Ecks



‘Tudo se move por causa de profundas leis físicas, e matemáticas’ Edson Ecks











 
                                                      “Kepler e Newton dizem que a atração é a causa desse efeito (A Terra atrai a uva, e a uva atrai a Terra), porém, não explicam como isso se dá, mas se a uva possuir massa-energia polaridades inversas as da Terra, ela não atingiria o chão, não ficaria flutuando sobre a terra como se fossem dois imãs com polos invertidos que não se tocam? Por isso a Lua não ‘cai’ sobre a Terra, ela ‘desliza’ por um túnel de fenômenos fisioquímicos, gerados  do núcleo da Terra, ao núcleo Lunar,  ao núcleo Solar, ao núcleo galáctico. Então, o que aconteceria se eu trocasse os planetas de seus lugares?”

               “Newton afirma ‘massa atraí massa’. Massa não atrai massa, energia atrai energia, ou seja, a energia contida nos corpos, no espaço, desenvolverá seus emaranhados gravitacionais gerais’Ecks 










               Certamente, é logico que a lei da gravidade funciona, mas até hoje, como nos tempos de Hooke, Newton e Leibniz, ela só representa o ‘o que’ do fenômeno gravitacional Universal, ela não explica o ‘porque’ do fenômeno gravitacional. É preciso deixa bem claro isso, para poder alicerça outros dados históricos sobre essa lei. O próprio Kepler no ‘Astronomia’, desistiu do ‘seu eletromagnetismo’, concluindo que havia uma força que mantinha os planetas em suas órbitas, que será no futuro, a mesma conclusão que terá Newton.


Tanto Kepler quanto Newton, dizem que os corpos são atraídos pelo o centro da Terra, mas para Ecks, todo corpo terrestre é atrativo, sendo que na parte nuclear, é a que possui maior intensidade atrativa, que se invertendo suas polaridades, ao invés, por exemplo, da terra atrai uma pedra, ela ficaria flutuando sobre a mesma.




Tanto Kepler como Newton, diziam que os corpos são atraídos para o centro da Terrestre.


Mas para Ecks, todo o corpo terrestre é atrativo, sendo que no seu centro, onde se concentra a parte nuclear, é onde se encontra sua maior parte atrativa, e que se invertendo essas polaridades, como já especificado, tornar repulsivas...

 Ecks também diz que um objeto menor pode atrair mais do que um objeto maior (Terra-Céu), se o objeto menor possuir maior nível de concentração massa-energia, do que o que se configura maior que ele.


Que é a diferença entre você tenta levantar uma pequena barra de ferro, e um bloco de isopor, o quinto do seu tamanho. Ou a diferença entre uma estrela de nêutron, e uma estrela comum.



Newton considerava a gravitação e a aceleração coisas distintas.



Albert Einstein e Marcel Grossmann, 300 anos depois, demonstram que são aspectos da mesma força:
A relação entre as duas é uma questão proporcional: quando maior for a massa, maior a energia (cinética) para mudar seu estado de repouso e movimento.


O fenômeno será chamado por Einstein e Grossmann, como a curvatura espacial, onde elementos massivos formam um ‘tapete espaço-temporal’.


Para  Ecks,  não é necessariamente a massa, mas a concentração de massa-energia (eletromagnética,cinética, Força fraca-forte, atômica, subatômica...) contida nos objetos, e nos espaços, é que lhe darão maior ou menor força de atração-repulsão, nos corpos e partículas, uns em relação aos outros.

Em 1919, observou-se uma pequena deflexão (curva) da luz, ao passar perto do sol, o que teria comprovado a ‘curvatura – espaço – tempo’ de Einstein e Grossman.

 


Edson Ecks:  A ‘curvatura – espaço – temporal’, ou qualquer outro fenômeno geométrico – gravitacional, deve-se à conformação... dos elementos gerais que envolvem esses fenômenos, por exemplo: o que desviou o raio luminoso ao passar próximo ao sol, na citação acima, foi à conformação... Solar (densidade, calor, partículas...), em oposição às do raio de luz.


Vale ressaltar que, a curva que a luz faz ao passar próxima do sol, pode não ser absoluta, mas, contendo variáveis, ou seja, uma sequência, por exemplo, de pequenas curvas... Na ‘curva – mestra’. O que aumentaria o tempo do percurso, ou ela teria que compensar de alguma forma seu movimento nesse trajeto.








Aceleração dos corpos em queda livre de Galileu










 “Acho que o fato de termos chegado aqui (Lua), devemos a um senhor chamado Galileu, que há muito tempo fez uma descoberta importante, a respeito da queda dos objetos e dos campos gravitacionais”.
“E pensamos que é o melhor lugar para confirmar suas descobertas senão na Lua”. Resolvemos testar isso para vocês, segurando uma pena na mão direita, e um martelo na mão esquerda, e a pena é propriamente a de um falcão, em homenagem ao nosso falcão, e vou soltar os dois aqui (a Pena e martelo), e espero que toquem o solo ao mesmo tempo!



Oh! Meu Deus. Galileu estava correto em suas descobertas”


David Scott, astronauta da missão Apollo 15, em agosto de 1971.




Na Lua ‘não há resistência’, isso faz com que dois corpos de massas diferentes alcancem o solo ao mesmo tempo.  Como preverá Galileu.



Galileu em seus estudos os rolamentos das esferas, em planos inclinados, que é uma forma lenta de queda livre, Galileu provou, que todos os corpos caem com a mesma aceleração, o fato de não se perceber isso no dia-a-dia, é por causa da resistência do ar, que tem maior influencia sobre objetos mais leves.







Também há o  ‘lendário’ teste na Torre de Pisa, em que Galileu demonstrou que duas esferas de massas (pesos) diferentes, chegariam ao chão ao mesmo tempo.





Newton matematizará a ‘queda dos objetos em queda livre’ de Galileu, concluirá que ‘se uma pluma ou uma bola de canhão, próximos a superfície terrestre, caem em direção ao centro da terra de modo idêntico (como propôs Galileu) lançados ao solo ou soltos sem velocidade vertical inercial caem 4,9 metros por segundos. Newton nos dá o valor dessa queda. Isso ocorre conforme a Constante G de Newton. Hoje o valor é de 10 metros por segundos.

































‘Tudo se move por causa de profundas leis físicas, e matemáticas’ Ecks, Edson









Mas para Ecks (Edson), diz que um objeto em queda livre pode sofrer mínimas flutuações, oscilações, ou perda de massa-energia em seus deslocamentos, ao ponto de sofrer variações em seus intervalos de tempo, que seriam constantes para Newton, ou em suas massas. A perda de massa-energia dos objetos em seus movimentos, também pode ocorrer com outros fenômenos, como os da luz.







Se um astronauta lançar, na Lua, de uma altura considerável, uma bola de aço e uma bola de pedra, a bola de pedra perderá mais massa-energia do que a bola de aço, pois se desprenderá mais partículas do corpo da bola de pedra, do as da bola de aço. Então, a bola de pedra, não estará com a mesma massa-energia, do seu estado inicial, em que foi lançada.

Para Kepler e Newton, quanto maior for a massa, maior a gravidade exercida.



No espaço-Terra, um corpo que possui mais massa-energia concentrada, atraíra mais do que um que tem menos, independentemente do tamanho. Que é a diferença entre você levantar uma pequena de barra de ferro, e um bloco de isopor.


Aplicando isso a um projétil, quando um projétil sai de uma arma, inicialmente, ele sai superaquecido, adquirindo, em seu corpo, energia-térmica, qual o fará romper mais facilmente a resistência do ar.





Tanto Kepler quanto Newton, dizem que os corpos são atraídos pelo o centro da Terra, mas para Ecks, todo corpo terrestre é atrativo, sendo que na parte nuclear, é que possui maior intensidade atrativa, que se invertendo suas polaridades, ao invés, por exemplo, da terra atrai uma pedra, ela ficaria flutuando sobre a mesma.












A CONSTANTE G DE NEWTON É CONSTANTE?





















No livro ‘Os Princípios da Ciensofia’, o escritor Ecks explica, por exemplo, porque há tantas dificuldades em se provar de forma regular a constante G, Inicialmente através da frase:




“Nenhuma constante é constante, e nenhuma inconstante é inconstante, em todos os lugares e indefinidamente’ Ecks



Cientista Cavendisch




Como uma lei universal, serve para a ‘incerteza de Heisenberg’, a inconstância de Heráclito, teoria do Caos de Poincore, para os teus sentimentos...


____Apesar da precisão de seus resultados, os cientistas chineses obtiveram dois dados diferentes (da constante G) com dois aparelhos ligeiramente diferentes e independentes. A equipe não sabe explicar essa discrepância. “Há algo que ainda não sabemos e precisamos de mais pesquisas”, diz Luo.



    O físico Luo Jun (direita) e sua equipe, junto a um de seus aparelhos.HUST



Aparelhos de mediação diferentes também podem causar variações nas medidas da ‘constante G’ (Ecks).



Aplicando a Gravidade (Ecks), neste exemplo acima, você entendera que, ínfimas variações, oscilações, vibrações, frequências... no ambiente micro (moléculas...) como no macro (laboratório, térmica...), geram medidas diferentes da ‘constante G’, por causa da In-Constante G, advindas dos fenômenos das Três Leis Da Dinâmica (Ecks), dos particulares para os universais. 




Isso também significa que, que os objetos ‘caindo em queda livre’ de Galileu, que Newton calculou que caem em 4, 9 metros por segundo, podem também sobre oscilações em seus tempos de quedas, entre os segundos percorridos.  Assim, como os planetas, por exemplo, a Terra pode oscilar no giro em torno de si mesma, que executa em 24 horas, para mais ou para menos.







A LEI DO QUADRADO A DISTANCIA DE ROBERT HOOKE







Entre 1679-1680 Newton se corresponde com Hooke, sobre os movimentos dos planetas.

Newton admitia que a correspondência com Hooke o levará a refletir sobre o assunto, mas sua divida não passa disso.





Inicialmente, Hooke , na primeira edição dos Principia, Newton lhe dá algum credito pela a descoberta da lei da gravitação Universal. Credito que desaparece na segunda edição dos Principia. John Wallis que obteve, com os movimentos dos corpos em um meio resistente, resultados similares mais ou menos gerais que os de Newton. Também faz reivindicações.



Em carta a Robert Hooke datada de 5 de fevereiro de 1675, Newton escreve essa celebre frase:



‘Se conseguir vê mais longe (que os outros) é que subir em ombros de gigantes’



Alguns viram nisso não uma prova de humildade em reconhecimento em relação a Galileu e Kepler, mas um sarcasmo dirigido contra Hooke  por causa da sua baixa estatura, e por Hooke entre outras coisas, acusa Newton de ter se apropriado da sua concepção da ‘lei do quadrado a distancia’. Mas será que Newton não também não deu uma pisadinha nos ombros do pequeno Hooke?.  Vamos decifrar esse código.



“Nenhuma grande descoberta foi feita jamais sem um palpite ousado’ Newton”. Foi exatamente o que fez Robert Hooke .



‘A lei do quadrado a distancia’, conceptualmente é de Robert Hooke, ele a apresentou em reuniões protocoladas da Royal Society, e a apresentou a Newton através de cartas, e Newton lhe dará arcabouço matemático. Mas será que Robert Hooke era tão assim desprovido de conhecimento matemático? Veremos uma resposta mais adiante.

Hooke descobriu a célula, e fundou a microbiologia.


Newton, após a morte de Hooke mandou queimar o único quadro que existia dele, e muitos dos seus trabalhos também.



Em 24 de novembro de 1679 (data inglesa), Robert Hooke (1626-1703), que nesse meio tempo se tonará o secretário da Royal Society, escreve uma carta cordial a Newton convidando-o a comentar algumas de suas hipóteses. Em especial, propõe que analise o movimento dos planetas, supondo que resulta de um movimento inercial em linha reta, dirigido segundo uma tangente, e de uma componente centrípeta (um movimento de atração em direção ao Sol). Chega a sugerir que a atração centrípeta varia no inverso do quadrado a distância entre o planeta e o Sol. Já havia muitos anos que Hooke considerava essa hipótesea de uma força de gravidade centrípeta tanto mais intensa quanto menor for a distância (Kepler diz que quanto mais afastados os planetas do Sol, menor  é a força)-, como provam duas conferencias na Royal Society em 1666 e 1670.




Em resposta de novembro, Newton confessa “não ter ouvido falar muita coisa’ a respeito das hipóteses de Hooke sobre a “explicação do movimento dos planetas pela a composição de um movimento direto tangente à curva e de um movimento atrativo em direção ao Sol”. Para ele, que ainda tem a noção enganosa de força centrifuga, a ideia é inovadora, ele a usa para determinar a trajetória de um objeto em queda livre na Terra que gira em torno do seu próprio eixo (seria um meio de provar experimentalmente essa rotação). E em 9 de dezembro, Hooke afirma que a trajetória seria uma elipse, e considera o problema um caso particular do problema geral dos “movimentos circulares devidos a composição de um movimento direto e de um movimento de atração em direção ao centro”







Em resposta de 13 de dezembro, Newton responde parcialmente. Em seis de janeiro (1680), Hooke volta à carga e torna a discussão a hipótese de uma atração central inversamente proporcional ao quadrado da distância. Fica sem resposta, em 17 de janeiro, tenta novamente. Hooke incitava Newton a determinar a trajetória descrita por um objeto submetido a uma força central atrativa e variando no inverso do quadrado à distância. Newton silencia, encerra o diálogo com Hooke. Mas continua a refletir sobre o problema formulado por Hooke, calado como uma pedra.


Newton comunicara os resultados de suas pesquisas em 1684, por meio de um manuscrito De motu Corporum In Gyrum (os Principia),


Hooke soube do manuscrito, e dos seus desdobramentos, e que seria publicado sobre a ágide da Royal Society, ele pensa merecer um agradecimento de  Newton, coisa que Newton sempre negará. Newton admitia que a correspondência com Hooke o levasse a refletir sobre o assunto, que sua dívida não passava disso, no que tange a ‘lei do quadrado a distância’, insistiu:





Afirmo que foi inspirada pelo o teorema de Kepler há uns vinte anos atrás”, escreveu a Harlley em 14 de julho de 1686.  Outrora, em 1684, o próprio Harlley,  pessoalmente,  apresentou ‘a lei do quadrado a distância’ a Newton, a pedido de Hooke e do matemático Christopher Wren. Wren oferecerá um bom premio para conseguisse lhe provar matematicamente. Mas o silencio de Harlley no decorrer da história, não foi a favor de Hooke, Newton já era rei (ou ditador ?) da Royal Society. Aqui quem decidiu: a ciência ou a política?




É através de Hooke e de sua lei do ‘quadrado à distancia’ que Newton se libertará do paradigma cartesiano do movimento dos planetas. Em 1679, Newton defendia hipóteses inscritas no quadro da interpretação magnética, os planetas se deslocavam num espaço vazio, que não oferece nenhuma resistência, submetidos a uma força dirigida para o Sol. Até então, Newton concebia o movimento dos planetas em termos mecanicistas: a revolução em torno do Sol geraria uma ‘força centrifuga’ (concebida por Huygens em  e para Hooke centrípeta) compensada por uma força dirigida para o Sol. Esta seria devida há um substrato interplanetário que, por um fenômeno de choque com os planetas, os impeliria rumo ao Sol. Assim, Hooke fez com que Newton descortinasse um novo horizonte.


Ameaçado pelas reinvindicações de Hooke, Newton se pôs a procurar em seus escritos de antes de 1679, algum indicio da lei do ‘quadrado a distância’. Como não conseguiu, afirmou que uma coisa é ter um modelo qualitativo, outra é matematizá-lo.




Dizer que há um abismo entre um valor qualitativo (teoria-ideia), e um valor quantitativo (matemático) é um erro advindo da falta da lógica, pois, uma boa ideia é a base de tudo, sem uma boa ideia o pesquisador, o matemático, fica ali olhando para a folha em branco em cima de sua mesa de trabalho, e continuará em branco, se a ideia não iluminar sua mente: sem a ideia o castelo não se ergue.




Como um prédio pode existir antes da ideia?



Quantos conceitos, influencias, derivaram dos pequenos e profundos textos dos pré-socráticos, Heráclito influenciara a dialética de Nietzsche, do átomo de Leucipo surgira a ‘era atômica’, e também a humilhação que Luidwig Boltzmann (1844-), sofreu quando em uma palestra afirmava que o ‘átomo de Leucipo’ existia, e o grande cientista Ernst Mach levanta-se da plateia, e diz que, “não acredito em átomos” (um pouco depois Bolltzmann que sofria de depressão se suicida). Ernst estava errado.





Mas pesquisas recentes do físico americano Michael Nauenberg, baseadas num manuscrito inédito de Hooke, mostram que ele usava uma construção gráfica para avaliar, de forma aproximada, a trajetória de um corpo submetido a uma força central. Para Nauenberg, o secretário da Royal Society, dispunha de um numero de ferramentas matemática, ao contrário do que alegava Newton.




















O CÁLCULO DIFERENCIAL E INTEGRAL








Fala-se muito sobre os cálculos de Leibniz e de Newton, mas os ‘pioneiros’ do cálculo são principalmente Descartes e Fermat...

Newton preferia dissimular seus métodos matemáticos, Leibniz esforça-se em comunica-los.



Em 1684, Leibniz, passa a publicar na revista Acta, de circulação europeia, os princípios e aplicações do cálculo diferencial e integral. Do método newtoniano das fluxões , em contrapartida, nem uma única linha tinha ainda se tornado publica.





Mas em sua estada em Paris, Leibniz já havia terminado seu próprio cálculo diferencial e integral. As acusações de plágio dirigidas a Leibniz não infundadas. Leibniz foi julgado pela Royal Society, já completamente nas mãos de Newton.


  Newton diz que elaborou o cálculo diferencial e integral, por volta de 1665, porém, Leibniz publicou o seu cálculo em 1685, Newton  tornará publico o seu em 1704. Historicamente, Newton pagou um preço alto por seguir os antigos, por isso não divulgará seu cálculo, porque seu método formal algébrico considerava inferior à geometria dos antigos.


A guinada metodológica dado por Newton em 1670, certamente o levou a guarda seus segredos, suas descobertas, como por exemplo, a modo dos pitagóricos na matemática, com uma diferença, eles eram uma seita, e Newton, um solitário, Leibniz era a favor da divulgação cientifica pública.







Nisso é preciso entender que o cálculo de Newton, e o cálculo de Leibniz: é que o de Leibniz é mais simples e cheio de símbolos, embelezando a matemática. E as equações posteriores, como a de Maxwell, do eletromagnetismo.




(...) o que há de melhor e de mais prático em meu novo cálculo, é que ela apresenta verdades por meio de uma espécie de análise, e sem qualquer esforço de imaginação... Leibniz.







Madame Emille du Chátelet Encara Newton



(Por Liebniz)

























Emille (1706-1748) foi quem traduziu os Principia para o idioma francês que hipnotizou Voltaire, aos vinte três anos de idade ela teve aulas avançadas de matemática, com especialidade em Newton. Também ficou conhecida por ser amiga e amante do filosofo Voltaire, outro obcecado por Newton, audaciosa criou uma academia para rivalizar com a Royal Society de Londres, desenvolvendo suas próprias ideias. Deixando perplexos seus mentores, e enlouquecendo Voltaire, que a amava e a admirava como pensadora (e mulher por sua beleza), mas que, para seu desespero, ‘Ousava’ desafiar o ‘Todo Poderoso’ Newton. Afirmando que havia falhas no pensamento do Sir Isaac Newton.

Newton afirmava que a energia de um objeto, a força com a qual ele colidia com outro objeto, poderia muito bem ser justificada por sua massa vezes a sua aceleração.




Em correspondência com filósofos naturais da Alemanha, Emille aprende outra visão, a de Leibniz, que propunha que objetos em movimento tinham uma espécie de espirito interior, que ele chamava de Vis Vida, força viva em latim. Muitos subestimavam suas ideais, mas Leibniz estava convencido de que a energia de um objeto era composta de sua massa vezes a sua velocidade ao quadrado.


Levar alguma coisa ao quadrado era procedimento comum da época: se você diz que um jardim é quatro ao quadrado, quer dizer que pode ser construído por quatro canteiros ao longo de quadro e ao longo do outro quadro, de forma que o número total de canteiros é 4 X 4= 16, se o jardim é oito ao quadrado, então oito ao quadrado será sessenta e quatro (64). Ele terá sessenta e quatro canteiros. Essa construção dos quadrados, é uma coisa que encontramos o tempo todo na natureza.




Para Voltaire era um absurdo Emille aceitar a ideia de Leibniz, a de atribui a um abjeto uma força vaga e imensurável como a vis vida, pois isso configurava-se um retorno ao passado, ao oculto. Esse era um pensamento da época oriundo de Francis Bacon, que Newton e seus contemporâneos adotaram, e que influenciara Voltaire, não se podia falar em ‘forças invisíveis’, e é por isso é que Newton não fara teorias para explicar ‘a força instantânea entre os corpos’, deixará isso para ‘os seus eleitores’.


A valente Emille se opunha, indagando a Voltaire que, ‘Quando um movimento começa você diz que é verdade que uma força é produzida, que não existe até agora, e Leibniz pergunta: de onde vem essa força?’


Apesar de apoio intenso a Newton, ela não se dogmatiza, não abre mão do que acredita. No fim, ela através de um cientista holandês chamado Gravissan faz um experimento para provar que tinha razão. Usando as formulas de Newton, o cientista criou um equipamento, onde ao deixar cair uma segunda bola de aço na argila, de uma altura maior, calculada exatamente para dobrar a velocidade da bola com o impacto: Newton nos diz que ao dobrar a velocidade da bola, dobramos a distância que ela percorre na argila, Leibniz nos pede para elevar a velocidade ao quadrado. A segunda bola percorreu não duas vezes como propôs Newton, mais quatro vezes, como propunha Leibniz. O que o cético Voltaire, exclamaria ironicamente, que não há motivo no mundo para atribuir forças ocultas as bolas de Emille. Emille certamente riria.






Mas Leibniz é que tem razão, é a maneira de expressar a energia de um objeto em movimento, se um carro esta a 30 km’s, é preciso de certa distância para parar, se estiver três vezes mais rápido, a 90 km’s, precisa de três vezes mais distancia para parar. Se vai a 90 km’s por hora, não será preciso três vezes mais distancia para parar, mais nove vezes mais distancia para parar.





A convicção de Emille de que a energia de um objeto é uma função do quadrado de sua velocidade, deu margem a um debate feroz após seu falecimento, e cem anos para ser aceita, a tempo dessa brilhante descoberta, finalmente, reunir a energia com a massa e com a luz, na Teoria da Relatividade.

A grande Emille engravidara do seu quarto filho, aos 42 anos, o que era muito perigoso para época, seis dias após o parto, ele sofre uma embolia e falece. Deixando um coração inflado de saudades dela, o do sarcástico Voltaire, e marcando seu nome para sempre na ‘história da ciência dos homens’: a mulher que encarou Newton e Voltaire.























Em novembro de 1716, morre o alemão Leibniz, aquele que foi considerado ‘o último sábio Universal’. Somente alguns parentes seus, e amigos fiéis assistiram seu enterro.



Onze anos mais tarde do outro lado do canal da Mancha, sir Isaac Newton morre na primavera de 1727. Um espectador estava presente aos preparativos da cerimonia, trata-se de Voltaire, um grande admirador de Newton, e divulgador de sua obra na França.


O cadáver de Newton é exposto na Cadetral de Westminter, na qual será enterrado em 4 de abril, ao lado dos grandes da Inglaterra. Seu funeral diz Voltaire, equivale pelas as pompas e pelas as honras de um rei.



Voltaire era um leigo em física, não conhecia os trabalhos de Kepler, suas descobertas e teorias, e de Galileu. Mas mesmo assim se colocou como um defensor ferrenho de Newton, na França, enquanto a sábia Emille, sua amada, enfrentará Newton e o próprio Voltaire, em defesa de Leibniz.



Voltaire também se colocou como opositor de Leibniz, em seu livro Cândido, ele esculacha com Leibniz, de forma sarcástica, irônica e acida (estilo que lhe deu fama), sobre que esse é, ‘o melhor dos mundos’. Ou Voltaire não soube interpretar o que disse Leibniz, em sua Téo odisseia, quando ele afirmava que Deus fez  ‘o melhor dos Mundos’:  Porque se Ele tivesse criado um Mundo perfeito, Ele teria criado outro ‘Deus’, ou ele agiu de má fé, em relação a Leibniz (por causa de Newton), que sua amada e erudita Emille, admirava, e defendia suas ideias ante as de Newton (na época).




Esse trabalho também a homenageia, por sua audácia, inteligência, beleza,  Emille, a ‘Hipácia francesa’, por ter tido bravura de encarar Newton e Voltaire, é preciso ter muito conhecimento e garra para isso, e sendo mulher, duplica a admiração, pois na época, a ciência era ‘coisa de homem’. Voltaire lhe prestou uma homenagem incrível ao afirmar que Emille era ‘um homem de saia’, para época isso foi um grande elogio.

A Téo odisseia de Leibniz, diz que esse é ‘o melhor dos Mundos’, porque foi o que foi possível criar, não que ele seja um ‘Paraíso’. Suas anomalias sistêmicas surgem disso.





A MALA DA DISCÓRDIA








Mas em meados de julho de 1936, a Sottheby`s leloa em Londres o conteúdo de uma mala de metal cheia de manuscritos de Isaac Newton. Esses documentos tratavam essencialmente de alquimia e de teologia. Revelando ao grande publico as inclinações de Newton para o hermetismo. 







E, ‘aquele que atingiu a ápice da humanidade’, ‘ aquele que antes dele só havia trevas’, endeusado por Voltaire, revelou-se um fanático teológico, um ‘místico’, um devoto alquimista, que dedicará mais tempo a essas categorias do que a própria ciência, da qual era considerado, ‘o pai da física moderna’. Se Voltaire soubesse... Emille riria (dele).




















LEIBNIZ E O CÓDIGO BINÁRIO: 0-1





Entre os grandes feitos de Leibniz, está o código binário, em que ele resolvia todas as equações utilizando apenas o código binário, zero e um, 0 -1.




Com 0-1, Leibniz  desenvolve um método matemático, pelo qual, ele substituía todos os números, apenas utilizando-se de 0 - 1.

Leibniz acreditava que se poderia construir uma máquina pensante, e que está poderia revolver todos os problemas humanos: o computador, qual não existiria sem seu código binário de Leibniz.







 O próprio Leibniz desenvolveu, e o que seria a parte central da máquina que ele mesmo havia idealizado (o computador). E que Alan Turing, utilizará em seu computador, na época o mais moderno, na segunda guerra Mundial, no projeto enigma, que salvaria milhares de vidas.






As imagens que você vê no computador, celulares.. são formadas apenas por 0 e 1, pelo código binário leibzniano.   


























TEMPO ABSOLUTO DE NEWTON E O TEMPO RELATIVO DE LEIBNIZ



Na mecânica de Newton, o tempo é absoluto e uniforme. Ou seja, ele existe independente da matéria e passa da mesma forma para qualquer observador. 



Leibniz avançou uma concepção do espaço e do tempo que apresentava finalmente uma compreensão clara de como uma teoria podia, num tom aristotélico, negar ao espaço e ao tempo um tipo de existência independentemente da existência das coisas materiais comuns e dos Acontecimentos materiais.


A ideia simples de Leibniz é a de que o tempo é apenas a coleção de todas estas relações temporais entre acontecimentos. Se não existissem acontecimentos, não existiriam relações, e assim, neste sentido, o tempo não teria uma existência independente dos acontecimentos que nele ocorrem. Há apenas os objetos e as inúmeras relações espaciais que eles estabelecem entre si.


Pela enorme influência da Inglaterra e de suas Academias no mundo—aliadas aos iluministas franceses (também “embriagados” de materialismo) —e ainda pela omissão dos alemães (especialmente de Kant), a obra de Leibniz demorou um bom tempo para ser plenamente reconhecida. Se é que o foi verdadeiramente.





Deixando de lado os aspectos muito mesquinhos dos ataques ao alemão promovidos por Isaac Newton——o fato é que, para os PRINCIPAIS focos das polêmicas, todas as antecipações de LEIBNIZ têm se confirmado. Leibniz é considerado um precursor das críticas ao tempo absoluto da mecânica, retomadas no século XIX por Ernst Mach (1838-1916). E influenciará fortemente o pensamento dos teóricos da Relatividade, de Poincoré a Einstein.



Primeira Lei. A Lei Da Inércia      
     
       

                                                      
Newton não pretendia ter descoberto a ‘lei da inércia’, que ela já se encontrava nos Princípios Da Filosofia (1644) de Rene Descartes, mas que Newton atribuía a Galileu. Em um dos seus manuscritos ele chega a afirmar que as leis da inércia eram conhecidas de Anaxágoras, de Aristóteles e de Lucrécio.

Todo corpo permanece em seu estado de repouso ou de movimento uniforme em linha reta, a menos que seja obrigado a mudar seu estado por forças impressas nele.
‘Os projéteis permanecem em seus movimentos enquanto não forem retardos pela a resistência do ar e impelidos para baixo pela a força da gravidade’.


Primeira Lei. A Lei Da Dinâmica – Ecks

Para cada efeito um emaranhado de causas une-se para formá-lo, separam-se para dissolvê-lo” (ou seja, nada no Universo existe por si só) Ecks



Todo corpo permanece em seu estado de ‘repouso’ ou de movimentos geométricos, a menos que seja obrigado a mudar seu estado por forças do meio impressas nele, ou vice versa, igualmente, divergentes, compensatórias, oscilatórias, ...

Quando um projétil sai da arma, p.ex, em seu percurso adquirira quantidades de força-energia, em relação à dele mesmo que o fará ir adiante, ou de o impelir para baixo...


ao sair da arma o projétil sai em alta temperatura que vai do quente (aqui ele adquire mais velocidade, rompe mais facilmente a resistência do ar....), morno, úmido, frio... que em tensão com o meio em sua volta –(densidade do ar, eletromagnetismo terrestre, temperatura...) o impelira para baixo pela a força da dinâmica da Gravidade.








Para A Lei Da Inércia





Tanto uma pedra grande, como uma pedra pequena, possuem movimento nulo, já que ambas estão em repouso (velocidade l nula). Pela a diferença de massa a pedra grande oferece mais resistência a qualquer mudança em quantidade de movimento do que a pedra pequena. É o que diz a lei da inércia.


Lei Da Dinâmica – Ecks


Nada está em ‘repouso’, Tudo se move em múltiplos movimentos, geometrias; tudo se move em ritmo, lento, ‘estático’, acelerado...” Ecks
                                   
Tanto na realidade clássica (esta que vemos e sentimos) como na realidade infra (que não vemos e não podemos sentir) não existe o ‘repouso’, o não movimento. Se a energia é a dinâmica do universo, tudo se move, em frequências, oscilações, vibrações..., e correlaciona-se em compensações, trocas, perdas e etc.
Porque o movimento é relativo no sentido de uma coisa depende das outras coisas, e de seus fenômenos fisenergeticos, porque nada é em si,

Para haver o movimento absoluto, ou a inercia absoluta de um objeto, este objeto teria que estar fora do espaço-tempo-dimensões, e como poderia este objeto estar no espaço sem espaço?







Tanto a pedra grande como a pequena não estão em ‘estado de repouso’, tanto na realidade clássica como na realidade Infra, mas em movimento. Estão se movendo, vibrando, trocando e produzindo energia, perdendo energia. Temos que entender que as pedras estão sobre a placa tectônica, que também se move, seu solo se move, treme, vibra, produz energia, que está sobre um núcleo dinâmico, a atmosfera dinâmica e seus fenômenos atmosféricos (massa de ar, processos térmicos como o calor, frequências...) ...e assim sucessivamente.
Isso faz com que as paredes da tua casa não estejam ‘paradas’, o prédio, o monumento na praça, a caneta em cima da mesa, ou pela a lei da inércia, ‘em repouso’, e se é um ‘repouso’, é um ‘repouso perturbado’, ou ‘movimento estacionário’
Quando você olhar para uma coisa, ela está ali, ele existe, mas... quando você desvia a vista dela, ela deixa de existir, pelo menos da forma como você vê.

Imagine uma pedra sobre o encostamento de uma grande avenida urbana. Onde trafegam por ali centenas de carros leves grandes e pequenos, de passeios as grandes carretas. E centenas e centenas de pedestres. Você olhar para ela, La esta ela, ‘parada’, em ‘repouso’. Mas toda a energia daquele ambiente está agindo sobre ela, agitando-a, vibrando, modificando-a. Agora aplique esse exemplo, as pessoas, ambiente carros, parada de ônibus, poste e etc.






II Lei de Newton

A mudança do movimento e proporcional a força motriz impressa, e se faz segundo a linha reta pela a qual se imprimi essa força.


II Lei Da Dinâmica - Ecks 

A mudança do movimento pode ser ou não proporcional a força motriz impressa, e se faz segundo percursos geométricos pelos quais se imprimiram essas forças.

IIII Lei Do Movimento

Uma ação é sempre igual e oposta à reação, isto é, as ações de dois corpos um sobre o outro são iguais e em sentidos contrários.


III Lei (Da Dinâmica) - Ecks

Uma ação pode ou não ser igual e oposta, a reação e a contração, isto é, as ações de dois corpos sobre o outro são iguais ou desiguais, em sentidos contrários, em relação à conformação, e as suas massas-energias.





É a diferença entre você esmurrar uma parede de cimento, uma parede de concreto, uma parede de gelo, uma parede de aço, e uma parede de isopor.

Quando uma bola de aço de dez quilos é lançada a uma velocidade constante atinge uma segunda bola de 5 quilos em ‘repouso’. No advento do impacto, o ‘tempo pará’. E a energia e transmitida da primeira para a segunda bola, e esta adquirira quantidade de energia e velocidade. Porque a bola em ‘repouso’ também possui energia, e é por isso que ela oferece resistência.


Quando as bolas se chocam é transmitida mais energia da primeira bola para a segunda por causa de suas diferenças de massas, do que o seu inverso. Mas quando a força-energia motriz da primeira bola e transmitida para a segunda, não será mais a mesma, haverá perda energética entre ambas e o universo ao redor.  Diferença essa que pode ser recompensada no ínterim do seu percurso. Que pode fazer sua velocidade ceder em milésimos de nano segundos, e acelerar na sequência, e depois parar.
Assim como ocorre com um projétil quando este passa pelas as saliências do cano do revólver, que ganhando impulso na saída do cano, ganha quantidade de energia térmica, fazendo-a romper mais facilmente e resistência do ar.



A Teoria da Relatividade E A Teoria X – De Edson Ecks





Inúmeras vezes foi Einstein solicitado por pessoas de todas as classes a dar um a síntese compreensiva do que ele entendia por “relatividade “__e nem uma vez Einstein explicou o que era “relatividade” __o que ele afirma sempre de novo em seus livros que a relatividade não e objeto de análise intelectual, e sim de intuição cósmica. Einstein – O Enigma Do Universo (pg
85-86). Martin claret. Huberto Roden


Definição Irônica Da Relatividade Por Albert Einstein



A secretaria de Einstein, atormentada, por uma série de pessoas, que lhe exigiam uma explicação simples da teoria da relatividade.  Perguntou-lhe. "como devo definir lhes relatividade?". Com um sorriso malicioso, retirando o cachimbo da boca "diga-lhes", respondeu a secretária,



"que quando um rapaz senta-se ao lado de uma bela moça, durante uma hora, tem a impressão que se passou um minuto. Deixei-o senta sobre um fogão quente durante um minuto somente e esse minuto lhe parecera uma hora__Isto é  relatividade. Einstein – O Enigma Do Universo. Martin claret.




A Teoria Da Relatividade e a negação dos valores absolutos, tanto faz, eu vejo de um jeito, você de outro e, estamos conversados

Definição Da Teoria X -  De Edson Ecks


No que concerne as p(ercepções) r(elativas) de tempo (do exemplo acima), às sensações temporais, serão r(elativas,ireais...) como poderiam ser absolutas, idênticas,  se houvesse a mesma divisão... de espaço-tempo-dimensões, entre os observadores, porém, ao valor de tempo propriamente dito, ab(soluto), pois uma hora e sempre uma hora, formada de 60 minutos, como um minuto o é de 60 segundos...




Independentemente das sensações temporais r(elativas, ilusórias): tanto do lado da namorada (uma hora como se fosse um minuto), como sentado num fogão quente (um minuto como se fosse uma hora).O fato de não sentir o dia (24 horas) passar, não significa que este não passou__Isto é A Teoria X – DE Edson Ecks




A Teoria X – de Edson Ecks, é a afirmação dos valores abs(olutos, reais, únicos, necessários), mesmo na agregação dos relativos (irreais, ilusórios...) quando o seu relógio marca 4 horas, o tempo pode oscila um
segundo para mais ou um segundo para menos, mais o relógio atômico visa  busca um valor ab (soluto, Calculável...) neste sistema.




Fuso horário relatividade


Em 1883 Henry Poincore se encanjou na sincronização da hora em torno do mundo. Em 1827 apoiou uma proposta sem sucesso das medidas circulares entre eles o tempo e a longitude Em 1897, o grande matemático Henry Poincore concluiu que o fuso horário em torno do um mundo só se daria da sincronização do tempo entre corpos em movimento relativo, p.ex., terra lua, sol.
















E por isso que Manaus tem um diferencial de uma hora no fuso horário em relação a Brasília. E o Brasil de 24 horas em relação ao Japão, e assim sucessivamente.



 Teoria X - de Edson Ecks

Isto é quando avaliamos o fuso horário espaço dimensional. Mas quando avaliamos pelo a óptica temporal, que é uma construção mental, baseada nos princípios matemáticos de deslocamentos espaço dimensionais, pode-se conjecturar que o tempo como medida é absoluto.

Um minuto é um minuto tanto em Manaus como em Brasília. Na Terra ou em marte,



coisa que nem um buraco negro pode destruir, ele não pode devorar o abstrato.















RELATIVIDADE E TEMPO

 




O cientista inglês H. J. Hay__concebeu um modelo para o globo terrestre achatado como um disco plano, com o polo norte no centro e o Equador na boda, e fixou um relógio atômico ou radioativo em cada um desses pontos. A previsão de Einstein estava correta: o relógio da boda marcava o tempo mais lentamente que o do centro.
O mesmo acontece com qualquer disco em uma vitrola: a cada volta o seu centro envelhecer mais rapidamente que na boda.

 
A Dilatação Temporal Da Teoria X – De Edson Ecks


O que faz o disco envelhecer..., na vitrola, mais no centro do que na boda, e que o centro está sendo forçado..., mais do que a boda, o que o faz desprender mais energia: “enrugando-o”.

Envelhecer (ir à falência, explodir, implodir, contrair, esticar, atrair, anular...) ..., é perder energia, ou desprender mais Do que se retém, ou em excesso, má distribuição... O que serve órgãos-organismos, sentimentos, política, economia, aos buracos negros as partículas subatômicas...

Mc=ec: massa vezes conservação é igual a energia conservada e vice-versa.









O Paradoxo Dos Gêmeos Da Relatividade





O paradoxo dos gêmeos, é um experimento mental envolvendo a dilatação temporal, uma das consequências desse paradoxo, é que se um homem faz uma viagem ao espaço em uma nave em alta velocidade, ao retornar para a Terra, estará mais jovem do que o seu irmão que ficou em terra, movendo-se a velocidades cotidianas. Teoria da Relatividade.




Os Gêmeos Sem Paradoxo Da Teoria X – de Edson Ecks




Mas para a Teoria X de Edson Ecks, esses fenômenos de dilatação espaço-tempo-dimensionais, ocorrem em qualquer plano, em qualquer velocidade:



Um gêmeo que passasse dez anos dormindo envelheceria menos do que o que o que passou 10 anos acordado, um gêmeo que passasse dez anos correndo envelheceria mais do que o que passou dez anos andando, um gêmeo que passasse dez anos vivendo no deserto escaldante envelheceria mais do que o que passou em zonas temperadas, um gêmeo que passasse dez anos alimentando-se regulamente envelheceria menos do que o que passou dez anos, alimentando-se desregulamente...


Mc=ec: massa vezes conservação é igual a energia conservada e vice-versa.
“Conservar-se no espaço é viajar no tempo” Ecks







Dimensões X





Nas Dimensões X   aplicarei o que fora exposto no ‘Gêmeos sem Paradoxo’, revelando que assim na Terra como no Cosmo’, ocorrem os ‘mesmos’ fenômenos de dilatação, espaço-tempo-dimensionais.


No Cosmo pode haver dimensões X, onde nosso fator biológico pode de ser alterado de múltiplas formas, como por exemplo, o que envelhecemos na Terra em setenta anos, lá envelheceriam em 700, ou o que envelhecemos aqui em setenta anos, lá envelheceriam em sete minutos, sete segundos...
...ou teríamos a saúde restabelecida de uma doença fatal, ou um uma doença comum seria acelerada, tornando-se uma doença fatal; o corpo pode adquirir outras estruturas, outros paradigmas.






As Dimensões X - podem desenvolver fenômenos mais estranhos do que os da própria ficção.



Também há possibilidade que essas dimensões X, possam a vir servir de atalhos para outros pontos no universo.

Que em vias comuns, teríamos de percorrer trilhões de anos-luz, por esses atalhos, diminuiríamos essa distância em milhões, séculos, anos, dias...Ou em alguns anos-luz, quilômetros, metros...

Aonde a luz poderia adquirir até mesmo velocidade superior a sua ‘constância’ (300.000 kms), ou sofrer desaceleração, onde veríamos um mundo em câmara lenta, e ao contrário, superacelerado. Como também pode haver no universo, dimensões X. Onde a matéria sofreria vários fenômenos de expansibilidade, compressibilidade e etc.


Pode haver dimensões onde a luz pode sofrer vários fenômenos de aceleração, desaceleração... nestas dimensões X poderíamos ver os acontecimentos em câmara lenta, hiper acelerado, quadro a quadro... se realmente um buraco negro sugar os raios de luz ao derredor, então, isto já está acontecendo.


O ESPAÇO RELATIVO E ABSOLUTO DA TEORIA X – DE EDSON ECKS

 
Há um erro interpretativo, semântico, da Teoria da Relatividade, quando ela diz que o espaço é relativo, uma régua que tem trinta (trinta) centímetros, para a teoria da relatividade é um espaço relativo, mas esta régua é um espaço absoluto, que tende a se relativar quando lançada em altas velocidades, sofrendo contração no seu corpo, no sentido inverso do seu movimento. Então, nesse momento está régua é um espaço ab(soluto...), que tende a se relativar:






 Para a Teoria X – Edson Ecks, há corpos, espaços que tendem a permanecerem constantes, absolutos; e há corpos espaços, que tendem a permanecerem inconstantes, relativos. Que é a diferença entre esta régua (de Trinta centímetros) e um corpo gelatinoso.






Por isso desenvolvi o termo Ciensôfia, que é a unificação da ciência com a filosofia, uma ajudando e equilibrando a outra, a filosofia ajudando a ciência a não se dogmatizar, e a ciência ajudando a filosofia a não cair em armadilhas ideológicas, utópicas, fantasiosas. A Teoria X  E Os Princípios Da Ciensofia. Ecks, Edson Ecks




A ciência sem filosofia é cega, e a filosofia sem ciência tetraplégica.

 






equação de Lorentz da relatividade



Um exemplo da Simultaneidade da teoria da Relatividade


Um observador a margem dos trilhos observa um trem passar, nesse momento o trem é atingido por dois raios, um na parte da frente do trem e o outro atinge a parte detrás do trem, para este observador os raios atingiram o trem simultaneamente, mas para um observador de dentro do trem, os raios atingiram o trem; um após o outro. Por isso espaço e tempo são relativos para a Teoria da relatividade.







Teoria X – De Edson Ecks
]



Dentro do campo perceptual, o observador à margem teve uma percepção absoluta. Real, do evento, e o observador de dentro do trem, de uma percepção relativa, ilusória do evento, pois os raios atingiram o trem simultaneamente, não um após o outro, como viu o observador de dentro do trem. Porque os olhos humanos não podem alcançar a verdadeira velocidade dos raios, por isso vemos a simultaneidade nesse exemplo.




Mas para a Teoria X – DE Edson Ecks, a questão aqui não são os observadores para o fenômeno, mas o fenômeno para os observadores.





Agora reformularei hipoteticamente os raios atingiram o trem em dois nanos segundos cravados, então o observador externo teve uma percepção ab(soluta), real do evento. E o de dentro do trem de uma p (ercepção) r (elativa), ilusória do evento, mas para ambos a realidade matemática do evento continua oculta para ambos.



Outro cenário: esses observadores fizeram uma aposta para ver qual dos dois estava certo, então colocaram dois sensores ultrassensíveis um na parte da frente do trem, e outro na parte detrás do trem, e ao passar o trem é atingindo simultaneamente pelo os dois raios, então o observador a margem e o de dentro do trem foram conferir os dados, o raio que atingira a parte da frente do trem chegara dois nanos segundos adiantados em relação ao raio que atingira o sensor da parte detrás do trem. E em uma outra aposta, os raios atingiram simultaneamente os sensores em cravados dois nanos segundos...


Pois bem, para haver entendimento ciensofico nos cálculos e nas percepções, classifico desta forma os exemplos supracitados:

Existe a realidade clássica, esta que vemos e medimos, e existe a realidade infra, que não vemos e não podemos medir naturalmente. Então, na realidade clássica, os raios atingiram o trem simultaneamente, e na realidade infra, os raios atingiram o trem alternadamente com um diferencial de dois nanos segundos, entre um e ou outro impacto. A Teoria X E Os Princípios Da Ciensofia De Edson Ecks


 
Equação da relatividade de Lorentz


A Teoria da Relatividade é mais óbvia do que se imagina a primeira vista, significa que nossa visão de mundo depender do observador, ou seja, é relativa, por exemplo, quando um avião cruzando os céus, para um observador terrestre ele executa um movimento em linha reta, mas para um observador espacial, o avião faz uma curva.
Para Teoria X, espaço-tempo-dimensões, são relativos, se houver percepções, cálculos desiguais entre os observadores, e absoluto, se houve percepções, cálculos iguais entre os observadores. Por isso no exemplo acima, é Improvável que o avião faça uma reta e uma curva ao mesmo tempo, o mesmo serve para o fenômeno do átomo está em dois lugares ao mesmo tempo,e o fenômeno partícula-onda.






Massa Se Converte Em Energia?

Usina nuclear


Para a Teoria da Relatividade, massa se converte em energia e vice-versa. Mas para a Teoria X de Edson Ecks, massa e energia não se convertem uma na outra, pois o são polaridades de um único fenômeno.
Quando você vê animal devorando outro, isso é o que você vê, mas o que você não vê, é que ali, energia devora energia, energias em transformações.


As leis da física são idênticas em qualquer referencial inercial alguém que não esteja acelerando ou desacelerando.



Se você por um jarro de pipoca no fundo do seu quintal, e sentar em uma cadeira a sua frente, você não verá nenhum acontecimento, ai você pega esse mesmo jarro de pipoca e repete o mesmo experimento, num carro com vidros escurecidos, com o carro se movendo em uma velocidade constante. O que acontecera? Nada, pela a Teoria da Relatividade, as leis da física foram iguais entre esses eventos.



Teoria X – Edson Ecks


Mas para a Teoria - X de Edson Ecks, ao mudar o jarro de pipoca de um campo para outro campo, as leis físicas se modificaram, por exemplo, o jarro de pipoca quando posto no fundo do quintal, recebeu mais umidade, e quando posto dentro do carro fechado, com vidros escurecidos, recebeu mais frio advindo do ar-condicionado do carro,



 e mesmo que o carro esteja se movimentando numa rua, bastante ‘lisinha’, com pouquíssimo atrito, ainda sofrera algum tipo de trepidação, oscilação,vibração, do carro contra o ar, e dos pneus do carro contra o asfalto... à curto, médio ou longo prazo as coordenadas não serão mais idênticas, entre o jarro de pipoca no fundo do quinta, e o jarro de pipoca dentro do carro em movimento, como propõe a Teoria da Relatividade.





A Teoria da Relatividade diz que tanto o Sol gira em torno da Terra, como a Terra gira em torno do Sol.



A Teoria X de Edson Ecks, diz que aparentemente tanto o Sol como a Terra giram em torno um do outro,




 mas há leis físicas poderosas entre estes astros, a Terra, minúscula em relação ao Sol, possui mínima força, em relação ao Sol, por isso a Terra está ‘presa’ a orbita Solar. Por isso, o Sol faz a Terra gira em torno dele.


Assim, como o Sol atrai a Lua, com atração superior a da Terra duas vezes mais.


Ao adentrar uma rua reta, você a vera larga na entrada e estreitando adiante, neste plano, estamos diante de uma p (ercepção) r (elativa, porque um individuo avistando-a do céu a vera como esta realmente é, ‘reta’;



este observador teria a p (ercepção) ab (soluta) sobre a geometria da rua. Mas, para este observador da rua ter noções de profundidade (sem a qual ficaria desorientado) ..., neste plano, ela ( a percepção), tornar-se-ia uma p (ercepçao) r (eal) a (bsoluta), ou seja, por um lado ela é r (elativa, irreal) , e por outro, ab (soluta, verdadeira).






ONDAS GRAVITACIONAIS DA RELATIVIDADE







O raciocínio de Pitágoras (570 a.c-490 ac.) considerava as proporções, os movimentos dos corpos celestes, do Sol, da Lua como dos planetas como forma de música, que estes emanavam pelo o espaço.


O grande Kelper acreditava na sinfonia do Universo, que os astros emanavam seus cânticos (ondas sonoras) que seria possível até identificar as ‘notas musicais da música Universal’. Em linguagem moderna, é o que chamamos de ‘ondas gravitacionais’, que nos trazem essa ‘musica até aos nossos ouvidos’.  Ouça Kepler:


A possibilidade de existirem ondas gravitacionais foi discutida em 1893 por Oliver Heaviside  usando a analogia entre a lei do inverso do quadrado da distância em gravitação e eletricidade.





Em 1905, Henri Poincaré propôs pela primeira vez as ondas gravitacionais (ondes gravifiques), que emanavam de um corpo e se propagavam à velocidade da luz, como exigiam as transformações de Lorentz e sugeriam que,

 
Hendrik Lorentz



em analogia com uma carga elétrica aceleradora produzindo ondas eletromagnéticas, massas aceleradas em uma teoria relativística de campo da gravidade devem produzir ondas gravitacionais.
Cientistas detectaram o som de ondas gravitacionais passando próximo da Terra.


Quando Einstein-Grossmann publicaram sua teoria geral da relatividade em 1915, a teoria deles era céptico da ideia de Poincaré, já que a teoria implicava não haverem "dipolos gravitacionais". No entanto, ele ainda perseguiu a ideia e, com base em várias aproximações, chegou à conclusão que, deveria haver, de fato, três tipos de onda gravitacional (nomeadas por Hermann Weyl como longitudinalmente-longitudinal, transversalmente-longitudinal e transversalmente transversal).


Vários observatórios de ondas gravitacionais (detectores) estão em construção ou em operação ao redor do mundo. Em 2017, o Prêmio Nobel de Física foi concedido a Rainer Weiss , Kip Thorne e Barry Barish por seu papel na detecção de ondas gravitacionais.



A descoberta é resultado do projeto LIGO (Observatório de Ondas Gravitacionais por Interferometria a Laser) da National Science Foundation (NSF), e do detector de ondas gravitacionais VIRGO, instalado na Europa, que procura objetos cósmicos coalescentes, como pares de buracos negros e pares de estrelas de nêutrons.

A segunda etapa, de 30 de novembro de 2016 a 25 de agosto de 2017, resultou em uma fusão binária de estrelas de nêutrons e sete novas fusões binárias de buraco negro, incluindo os quatro novos eventos de ondas gravitacionais – nomeados de GW170729, GW170809, GW170818 e GW170823, em referência às datas em que foram detectados.


Segundo os astrônomos do LIGO, o GW170729 é a fonte de ondas gravitacionais mais massiva e distante já observada. Nesta coalescência (mistura química), que aconteceu há cerca de cinco bilhões de anos, uma energia de quase cinco massas solares foi convertida em radiação gravitacional.


Já GW170814 foi a primeira fusão binária de buracos negros medida pela rede de três detectores e permitiu os primeiros testes de polarização por ondas gravitacionais (análogos à polarização de luz).

Na física, as ondas gravitacionais são ondulações na curvatura do espaço-tempo que se propagam como ondas, viajando para o exterior a partir da fonte. Elas são incrivelmente rápidas, viajam à velocidade da luz (299.792 quilômetros por segundo) e espremem e esticam qualquer coisa em seu caminho ao passarem.

Previstas em 1916 por Albert Einstein-Groismann com base em sua teoria da relatividade geral, e detectadas em 2015, as ondas gravitacionais transportam energia na forma de radiação gravitacional. A teoria geral da relatividade de Einstein-Groismann prevê que a presença de massa causa uma curvatura no espaço-tempo. Quando objetos maciços se fundem, essa curvatura pode ser alterada, enviando ondulações para fora do universo. Estas são conhecidas como ondas gravitacionais. Com o tempo que esses distúrbios nos alcançam, eles são quase imperceptíveis. Foi apenas um século após a previsão de Einstein que os cientistas desenvolveram um detector sensível o suficiente - o Laser Interferometer Gravitational-Wave Observatory ou LIGO - e conseguiram confirmar a existência de ondas gravitacionais.









As Ondas Gravitacionais Da Teoria X - De Edson Ecks


“Tudo que se move produz energia, produz ondas (gravitacionais - ou as recebem de outros sistemas), o bater de asas de um beija-flor, moléculas se movendo, a Lua, uma Galáxia..comensuráveis e ‘incomensuráveis” Ecks




Quando uma mariposa bate suas asas, a energia desse movimento gera uma onda, que é imediatamente ‘engolida’, pelas as ondas de ar ao derredor dela. Quando uma estrela explode, megatons de energia se espalham, até resultar em ondas (frequências, ondulações...) que se espalham pelo o Universo, até sua dissipação pelo o próprio espaço, em seus emaranhados gravitacionais, como no caso do bater de asas do beija-flor.


O ‘mesmo’ ocorre com girar de um átomo, o pelo o girar do Sol:






Estava caminhando quando vi uma folha cruzando o espaço, e pensei como as ondas gravitacionais são transportadoras e produtoras dos movimentos, e carregadoras das informações em seus níveis fisenergeticos.

O filosofo Nietzsche especulava em seu livro ‘Para além Do Bem E Do Mal’, que:
__as luzes das estrelas mais longínquas chegam muito mais tarde até nos. Tanto que homem que não as percebeu nega sua existência...".




A Relatividade dirá que essa informação eletromagnética (luz das estrelas) se curvará ao passa próxima a um corpo massivo como o Sol.  Essas informações em conjunto com as ondas gravitacionais tanto poderão rastrear o Universo visualmente, como sonoramente, tanto pelas as ondas gravitacionais como pelos os fenômenos eletromagnéticos...





Para a Teoria X – de Edson Ecks, tanto a luz é um fenômeno absoluto (constante em sua velocidade), como relativo (variável em sua velocidade), por isso seu ‘encurvamento’, ao passar próxima ao Sol
, ou como afirma a teoria atual que diz que os buracos negros ‘devora’ até mesmo a luz, que passa em seu campo gravitacional.



Sábado quando estava meditando com esse tema, era noite e estava chovendo, encostei-me à grande da janela de casa que estava aberta, e coloquei-me a observar o campo de futebol do outro lado da rua, e observei que, no campo havia uma parte gramada e no meio desta havia um vão que formou um tapete de água, e estava chuviscando, os chuviscos caindo no tapete d água geraram pequenas ondas,




e fiquei admirando aquele evento, então joguei esse exemplo dos chuviscos para ondas gravitacionais, e imaginei esse tapete d´agua como o universo, os astros... liberando ondas, umas se fundindo com as outras, contaminado as informações de umas com as outras, ou copiando e carregando-as consigo.



Acoplando esse pensamento com sistema micro, ‘ouvir’ o som do átomo e no macro, som do Sol. E ‘vi’ as ondas mecânicas e eletromagnéticas, cruzando pelo o espaço.

Olhe para o céu agora, e imagine se você pudesse ver os sinais de wi-fi,os sinais transmitidos pelo os satélites,a radiação solar,as ondas eletromagnéticas
 ‘entrelaçadas’ pelo o nosso céu, é isso que ‘vejo’.



Por isso que o experimento da LIGo, pode ter detectado ondas gravitacionais vindas de outra, ou outras fontes. Não da colisão de dois buracos negros, pois ainda não foram comprovados cientificamente.




Nesta semana, astrônomos revelaram a primeira imagem real de um buraco negro. A "fotografia" foi tirada a partir de oito telescópios alinhados simultaneamente ao redor do mundo, levou 10 dias para ser montada e custou mais de 40 milhões de euros. Tudo isso para mostrar o misterioso objeto de 40 bilhões de quilômetros de diâmetro localizado a 55 milhões de anos-luz da Terra, na galáxia Messier 87.

Mas o que é um buraco negro? Um buraco negro é um objeto de massa quase infinita localizado num canto reduzido do espaço - sim, 40 bilhões de quilômetros ainda é considerado "reduzido" quando falamos do universo conhecido. Por ser tão massivo, ele cria um campo gravitacional tão grande e tão forte que nada consegue escapar dele, nem mesmo partículas de luz.

O conceito moderno de buraco negro como uma região do espaço–tempo da qual a luz não pode escapar tem suas origens no século 18 com o reverendo inglês John Michell (1724–1793) que propôs a existência de estrelas invisíveis para o observador – estrelas escuras– porque a luz não poderia escapar da atração gravitacional gerada por elas.

 

“Einstein rejeitava os buracos negros, tendo declarado em um famoso trabalho publicado em 1939 que eles não existiam”, conta o físico Freeman Dyson, do Instituto de Estudos Avançados, em Princeton (nordeste dos EUA).

 

Entre dois cálculos de trajetórias de artilharia, Schwarzschild notou uma enorme quantidade de peso como uma estrela muito densa, concentrada em uma área pequena, por isso distorcem o tecido do espaço-tempo que nada, nem mesmo a luz consegue escapar de seu campo gravitacional.

Durante várias décadas os físicos têm questionado os cálculos de alemão. Essa ideia permaneceu no estado de uma teoria simples. Mas telescópios espaciais hoje sonda o espaço e encontrar regiões com um enorme campo gravitacional. A maioria dos cientistas consideram estas regiões como buracos negros. Que Schwarzschild teorizou parece ter se tornado realidade. Essa equação de Schwarzschild , foi desenvolvida antes da equação da relatividade geral de Albert Einstein e Marcel Groiismann



A  imagem computadorizada que diz ter comprovado o existência de um buraco-negro, imagem  está que está estimada em trilhões de kms da Terra, pode ser de algo parecido com um buraco negro,  outro tipo de fenômeno espacial, um outro corpo espacial.


Os que chamarei de 'Corpos estranhos' (CE), que possuem várias funções e de várias formas, como servir de atalhos de uma parte para outra do espaço, como por exemplo, ao adentrá-lo uma nave pode adquirir mais velocidade,
encurtando assim a distancia de um ponto para o outro, ou de tornar a viagem por dentro desses corpos insuportavelmente lenta, de conservar a matéria (mesmo a animada), ou de destruí-la de vez entre outros fenômenos.


O nome 'Corpos estranhos' pode ser de outras cores, conforme nossa percepção (equipamentos) angulo a distancia, de longe parecer uma cor, e de próximo outra, alguns são praticamente idênticos,


 assim como temos a coral e a falsa-coral, também podemos ter no espaço, um buraco negro e um falso-buraco negro, que não exercem as mesmas funções.
O que a Teoria X – de Edson Ecks, chama de percepção ou de movimento relativo (irreal, ilusório) do evento.



E quando dado a fenômenos eletromagnéticos, por exemplo, chamo-os de ‘Fenômenos estranhos’ (FE), porque dentro de um campo de deflexões e refrações,
em consonância ou atrito com nossa visão, nosso campo Óptico, ou instrumentos observacionais podem nos confundir, ‘igualmente’, como no caso dos Corpos Estranhos.

Temos um problema cabal nesse experimento da LIGO, ele se justifica pelo o que ainda não foi justificado, que ainda é apenas uma hipótese, e não ‘importa’, quantos indícios os justifiquem, são apenas indícios muitos distantes de nosso alcance, ate mesmo da nossa intuição, pois os buracos negros ainda não foram comprovados cientificamente. Logo, não temos a certeza absoluta (apenas relativamente) de onde veio às ondas gravitacionais detectadas aqui na Terra, pelo o centro LIGO.







(EDSON ECKS, NO LINK ABAIXO)


A TEORIA X - DE EDSON ECKS, EXPLICA OS PROCESSOS HISTÓRICOS DA TEORIA DA GRAVITAÇÃO E DA RELATIVIDADE, ONDE EXPÕE SUAS PRÓPRIAS TEORIAS À PARTIR DESTAS.



https://ecksfotos.blogspot.com/2020/07/em-nome-de-kepler-edson-ecks.html







Comentários

  1. Uma grande mente , uma pena ter sido cego para as atrocidade cometida pela igreja em nome de "Deus"

    ResponderExcluir
    Respostas
    1. KEPLER ERA LUTERANO: A mãe dele, e ele, foram perseguidos pela a 'santa inquisição'

      Excluir

Postar um comentário

Postagens mais visitadas